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1. Prologue 

Complete distriburivity is an old theme in lattice theory: the basic results were 

already proved in the early fifties by G.N. Raney. Some new features of completely 

distributive lattices have bet.. &scovered recently by P. Dwinger [5] and K.H. 

Hofmann [9]. The backg ound for [Q] is the categorical equivalence between com- 

pletely distributive lattices and continuous posers, due to R.-E. Hoffmann (see [2, 

pp. 159-2081) and J.D. Lawson [12]. It is therefore natural to give a presentation 

of these matters in a more general framework: the category of Z-continuous posets. 

The study of Z-continuity was suggested by J.B. Wright et al. (14, p. 761: “... it 

may be only a curiosity, but we think it would be interesting to investigate this 

generalized concept . . . ’ ’ . The choice of morphisms is net obvious - at least in the 

non-complete case. Galois connections constitute the main ingredient. For 

continuous lattices and their generalizations, Galois connections play an important 

rGle anyway, see [3], 181, [ 1 ‘I] and [ 131. Now, morphisms between Z-continuous 

posets can be characterized in terms of pairs of adjoint maps. Instances of this 

adjunction lemma appear in papers by L. Geissinger and W. Graves [6], K.H. 

Hofmann and J. Lawson [lo], and K.H. Hofmann and A. Stralka [l I]. 

The present paper focusses on the application of Galois connections to 

continuous posets and their generalizations. Thus we define Z-morphisms (as 

certain Galois maps), prove the adjunction lemma and show that Z-morphisms 

preserve various kinds of Z-continuity. Then the Z-version of the following fact is 

readily obtained: a lattice is continuous if and only if it is the image of an algebraic 

lattice under a Lawson-continuous map. Moreover, the images of Z-continuous 

posets under Z-morphisms can be characterized intrinsically. This, for instance, 

applies to the results in [5]. 

We assume that the reader is familiar with completely distributive lattices (cf. [I] 9 

171) and continuous lattices (cf. [73, and [2] for more recent results). 
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2. Some Z-folkllore 

In what follows 2 always denotes a function which assigns to each poset P a set 
2(P) of subsets of I3 (Z-sets) such that all singletons and all isotone images of Z-sets 
are Z-sets, i.e. 

(i) (A-) E Z(P) for all x E P, and 
(ii) if cp : P-Q is an isotone map of I’ into some poset Q, then p(Y) &Z(Q) for 

all YE Z(F)‘/ 

The lower ws generated by Z-sets are called Z-ideals (cf. [14]). As usual 

1 Y= (s~Plsr_v for some YE: Y} 

cicn~~t~s the lower set generated by Y. Then 

b(P,=(lY/ YEZ(P)) 

I\ thy ,>w~I ot’ all Z-ideais of P (ordered by inclusion). 

.4 pot P is called Z-complefe if every Z-set (or equivalently, every Z-ideal) of 

P \.‘a\ a +upremum in P. A poset P is called Z-continuous if P is Z-complete and 

f‘or each element _I’ E P there exists a least Z-ideal Y such that y s V Y. The Z-hefow 

w 4, _v :md the Z-helo\r* reiahon + are given by 

up-c1mp1tw 
pcw!t 

ccmplete 
lattice 

sup-semi- 

lattice 



The category of Z-continuous posets 221 

An element XE P satisfying x+x is called Z-compact. The Z-below relation of P 
is said to be approximating if y = V&y for all y E P. Note that a Z-complete poset 
is Z-continuous if and only if the Z-below relation is approximating and every 
Z-below set is a Z-ideal. A Z-complete poset P is called Z-algebraic if each element 
y E P is the supremum of some set K of Z-compact elements such that 1K is a 
Z-ideal. A poset P is Z-indwtive (in the sense of [14]) if every element of P is the 
supremum of some YE Z(C) where C is the poset of all Z-compact elements in P. 
Every Z-complete and Z-inductive poset is Z-algebraic, and for most of The relevant 
choices of 2, the converse is also true. However, one counterexample is obtained 
by taking for Z(P) the system of all upper bounded subsets of P. In this case the 
complete chain cu + 1 - { 0, 1,2, . . . , w} is an example of a Z-algebraic poset which is 
not Z-inductive because there is no set of Z-compact (i.e. completely sup-prime) 
elements which has both a Z-compact upper bound and the supremum cr). 

The standard examples of Z are given by selecting directed sets, arbitrary sets, and 
(nonempty) finite sets, respectively. See Table 1. 

Of course, the Z-below relation is always transitive. In each of the preceding 
examples, it is even idempotent on any Z-continuous poset. In the context of con- 
tinuous lattices this property of the way-below relation is usually referred to as the 
interpolation property. Fc- arbitrary Z, we call a Z-continuous poset P strongly Z- 
confinuous if it admits interpolation, that is, ~4, y implies that x+ W+,Y for 
some w E P (cf. 131, [ 121). Note that every Z-algebraic poset is strongly Z-con- 
tinuous. Indeed, a poset is Z-algebraic if and only if it is Z-continuous and 

.t=+y * xswry for some Z-compact element ti’. 

Unfortunately, we do not have any example of a Z-continuous poset missing the in- 
terpolation property. For the usual choices of Z the notions of ‘Z-continuous’ and 
‘strongly Z-continuous’ always coincide. This is due to the fact that in most in- 
stances the function Z under consideration is union-complete (in the sense of f 141): 
Z is called union-complete if for every poset P, the poset I,(P) is closed under 
Z-unions, that is, the union of any Z-set of %(P) is a Z-ideal of P. As in elle case 
of continuous posets, one can prove the following: /f Z is union-compfere, then 
every Z-continuous poset is strongly Z-continuous (see the Theorem below). 
However, the assumption of union-completeness is not always necessary for this 
conclusion. If, for example, Z selects all subsets with at most two elements then 

every Z-continuous poset is already Z-algebraic (and therefore strongly Z-con- 

tinuous) although Z is not union-complete. 
In [14] it has been shown that for every union-complete Z, the Z-complete 

Z-inductive posets are, up to isomorphism, just the Z-ideal systems I,(P); in par- 
ticular, I,(P) is Z-algebraic. The compact elements of Iz (P) are precisely principal 
ideals of P. 

Let cp : P-+Q and I,U : Q-P ‘r>e maps between posets P and Q such that 

I,UX(: u if and only if .US~W (I‘ E P, XE Q,. 
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Then w is called a IOHW adjoint of p, and ~0 is called an upper adjoint of y. Adioint 

maps determine each. other uniquely. Maps having a lower adjoint are known in the 

literature under various names: right adjoint, left adjoint, residual, Galois maps, 

etc. The reader wiil find the necessary information in the books (41 and [7]. The 

definition of Z-continuity can be rephrased in terms of adjoint maps: a Z-complete 
poset is Z-contirruous if and only if the supremum map 

has a lower irdjoint. The lower adjoint is then, of course, the Z-below map 

1,: ~-‘~z(~), Y” ;I,y i (cf. [13]). 

3. Morphisms versus csmorphisms 

Henceforth we will briefly write + and 1 instead of ez and iz. 

A map cp : P-+ Q of a Z-complete poset P into a poset Q is called a Z-morphism 
if cp has a lower adjoint and preserves Z-sups: 

cp(V Y) = Vq(Y) for all k fz Z(P). 

..+% map v : Q -+P is called a Z-cornorphism if w has an upper adjoint and preserves 

t 1~2 Z- bclo~v retar ion : 

_v+v in Q implies w.u+ w.1’ in P. 

For %-algebraic posets Q the latter is equivalent to the condition that 1~ maps 

Lwmpact elements onto Z-compact ele:nents. Morphism3 and comorphkms cor- 

wpond to each other as one expects: for any adjoint pGr (cp, w) of rwps between 
kontinuous posets, cp is a Z-morphism if and only if v/ is a Z-con-wphism. In fact, 

w have the following bask lemma. 

Lemma. Let tp : P-+ Q be II map betweet? Z-complete posets P and Q which bus a 

iorwr &joint yj. If cp is II Z-morphism therl w is a Z-comorphism. [f the Z-below 
r&rioII 0-f Q is approxir~wting arld w is u Z-conrorphism, then cp is a Z-morphism. 
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Consequently, cp preserves Z-sups. Cl 

Let y’f.9 denote the category of Z-continuous posets and Z-morphisms. The 
Lemma provides a concrete representation of the category opposite to PK.+? Our 
main result confirms that we have chosen the right morphisms. 

Theorem. The image of a Z-continuous (strongly Z-continuoirs, resp.) poser under 
a Z-morphism is Z-continuous (strongly Z-continuous, resp.). For a union-complete 
function Z, a poset is (strongly) Z-continuous if and oniy if it is the image of u 
Z-algebraic poset under a Z-morphism. 

Proof. Let (p : P-+Q be a Z-morphism of a Z-continuous poset P onto a poset Q. 
Then the lower adjoint w : Q+ P of cp is one-to-one, and the composition cpw is the 
identity map on Q. The proof now proceeds in a number of steps. 

q maps Z-ideals onto Z-ideals. 

For, let U be a Z-set of P. Then ~(1 CT) G icp(U) because (p is isotone. Since p has 
a lower adjoint w, XE iv(U) implies that ~,UXE 1 U and hence .I-= C~I,UXE ~(1 U). 
Therefore ~(1 U) is the lower set generar.ed by the Z-set q(U). 

(2) Q is Z-complete. 

Let 1’ be a Z-set of Q. Then w( Y) is a Z-set of P and so V w(Y) exists. Certainly, 
q(V w( Y)) is an upper bound of cpw( Y) = Y. On the other hand, for any upper 
bound z of Y we get +)(V v/( Y )) d cpy/z = z. Therefore q(V I,U( Y)) is the supremum 
of Y. 

0 II 4 wv in P implies vprr <(y in Q. 

Let _W V Y for some Z-set Y of Q. Then by (2), yr (p(V w(Y)), and SO tp_y~ 

VW(Y). As v/(Y) is a Z-set in P, we get &I,u~)~~(~w(Y))G&JW(Y)=JY. Thus 
cp(J VY) c iv* 

(4 ~v=cp(h~~kI~(Q) for ~EQ. 

We have seen in (3) that &WV) is contained in 1 y. If sey, then ~x~t,~y by the 
Lemma, and hence x = (pwx E (p( 4 wy). This proves the required equality, and there- 
fore 4 y is a Z-ideal by (1). 

(3 4 is approximating on Q. 

Indeed, since 4 is approximating on P and q preserves Z-sups, we deduce from (4) 
that 

From (2), (4), and (5) we infer that Q is a Z-continuous poset. 

(6) x<y in Q if and only if wx% I,VY in P. 



Indeed, W_M v,t implies .Y = qwx<(,t by (3). 

(7) JIJ/_V= cy&) for ~EQ. 

The Z-below set 1, y is a Z-ideal, and hence so is the lower set 1 cy(i u). The 

supremum of the latter is w(V k y), and w(V 1 y) = v/,v by (5) (because a lower adjoint 

map preserves a!i existing suprema). Since 4 wy is the least Z-ideal whose supremum 

is W-V. the Z-&al 1 ty(i y) must contain 4 w-y. The converse inclusion follows from 

[he fact thak (Y preserves the Z-below relation. 

CK) If P admits interpolation, then so does Q. 

Let A-<(J in Q. Then WA-<< t,q, and thus there exists u E P with ws4 vt w_v by inter- 

polation in P. In view of (7) there exists WWJJ such that 06 v/w. Hence by (6) we 

gcr A-< w<_v, as desired. 

W conclude that Q is strongly Z-continuous whenever P is strongly Z-con- 

t inuouq. 

If Z is union-complete, then I,(P) is a Z-algebraic poset, and the 

supremum map v : I/(P)-+ P is a Z-morphism. 

In fact, the map 1’ prercr ws Z-sups, and by Z-continuity of P, v has a lower adjoint. 

Nou , by (9) and itchat has been shown before, the proof of the Theorem is 
iW~lplt‘tC. 

NOM suppose that P is an arbitrary poset and w : Q -+ P is some one-to-one map 
hai irlg an upper adjoint v. Then u/(Q) = v/p(P) is an isomorphic copy of Q. The 

map w(p is a kernel map of P: a kernel map K : P-+ P is an isotone map such that 

xh’ll - M 2 u for all II E P. A subset A’ of P is a ker*r?e/ subset if h’ is the image 

iI11 h- h.(P) of s01iit‘ ktmrl map K. Recall that a kernel subset is closed under 
d%trxy (ekting) suprma. NW, it‘ K : P-, P is any kernel map, then the inclusion 

rip I : in1 A- -+F of the kernel subset is a lower adjoint of the onto map K : P-+im K. 

Hcnzc b!, the L.emma, it’ P is Z-complete and K preserves Z-sups, then I preserves 

4 ;rnd thus is a Z-comorphism. Conversely, if I preserves G, then h’ preserves 

/+tlp\ provided that 4 is approximating OII irn h-. In this case, K can be regarded 

:tb ;g L-morphism of P onto im h-; further by (6), the Z-below relation of im K is just 

t tic ret riction of the Z-below relation of P. Finally observe that for any Z- 

rwrphiw v, : I’-+ Q the corresponding kernel map K = W(L (where w is the lower 

;~h~illt of pb prwx~ cs Z-sups. HcJnL*e every image o.fa Z-contimrorrs poser P under 

lf 6Qwphi.w~ cur1 he represented as a kernel whet 0-j’ P whose Z-be/m? relatiora 

15 Ik w friction oj’ the Z-be/o w relatiotl oj’ P. Corr l*erse&, every Z-corhumrrs 



The category of Z-continuous poseis 225 

kernel subset of P with the latter property is the image of P under a Z-morphism. 
For union-complete 2, every Z-coniinuous poset Q may be regarded as a kernel 
subset of some Z-algebraic poset P such that x4 y in Q implies x + y in P. 

Implicit in the foregoing is an intrinsic description of the images of a Z-con- 

tinuous poset under Z-morphisms. Let P be a Z-complete poset. An equivalence 

relation 0 on P is called a Z-congruence if 0 is the kernel of some Z-morphism ~0 

of P onto a poset Q, that is, u 0 o if and only if cpu = ~0. Then 0 is also the kernel 

of the map WV, where w is the lower adjoint of (p. In particular, vy(po is the least 
element of the O-class containing v E P. In view of the above observations the 

following characterization of Z-congruences is now evident: for any Z-complete 
poset P, Z-congruences can be identified with kernel maps preserving Z-sups. If, in 
addition, P is Z-continuous, then there is a one-to-one correspondence between 
Z-congruences and Z-continuous kernei subsets qf P whose Z-below relations are 
restrictions oj’ the Z-below relation of P. 

4. Epilogue 

As was mentioned before, instances of 1 t.3 are (i) the category / I” of con- 

tinuous posets and (ii) the category / I/ of completely distributive lattices. For the 

full subcategory i :j of f,.+, that is, for continuous lattices, the results of Section 3 
belong to the folklore, cf. Chapters 1.2, 1.4, and IV.1 of the compendium [7]. Note 

that a map between complete lattices is a Z-morphism if and only if it preserves ar- 

bitrary infs and Z-SUDS. Then a Z-congruence is an equivalence relation compatible 
with arbitrary infs d1.2 Z-.,ups. Hence complete congruences on complete lattices 

can be identifiec’ with ..crnel maps having an upper adjoint. This fact is well known, 

see 14, Theorem IS. 11. Moreover, Dwinger’s main results in [5] (viz. Theorems 3.4 

and 4.3) follow from our observations in Section 3: for instance, the lattice of com- 

plete congruences of a completely distributive lattice L is antiisomorphic to the lat- 
tice of completely distributive kernel subsets K of L such that xey in K implies 
.u<<<y in L.. 

There arc, of course, further instances of, say, the Lemma. For each poset let Z 

select all nonempty finite subsets. Then a Z-complete poset P is just a sup- 

scmilatticc. Let <J denote its Z-betoh relation. The Z-compact elements s <1x are 

those elements which are sup-prime. The relation <I is certainly approximating on 

P whenever P is generated by sup-primes (that is, every element of P is a supremum 

of sup-prime elements). Let ~0 : P-Q be a map bet ween sup-semilattices generated 

by sup-primes which has a lower adjoint w. Then v preserves finite suprema if and 

only if I,U maps sup-prime elements onto sup-prime elements. The order-theoretic 

dual of this statement is basic to the spectral theory of continuous Heyting algebras, 
see K.H. Hofmann and J. Lawson [lo]. Notice that even a complete lattice gener- 

atcd by sup-primes (i.e., the lattice of closed sets in a topological space) need not 

be Z-algebraic. Indeed, for the present function Z, either of the properties ‘Z- 
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algebraic’ and ‘Z-cant inuous’ means “sup-Osemilattice in which every element is a 
finite supremum of sup-primes”, because in a .,Z-continuous poset the finitely many 
maximal elements of any Z-below set must bc! Z-compact, that is, sup-prime. 

The reader will have no difficulties in finding more applications of the manipula- 
tion rules for the general Z. 
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